
About Lab 7

Lab 7 is a continuation of Lab 6. In Lab 7 you will
implement priority queues (via heaps) and use
them along with the WebPageIndex class from Lab
6 to complete a search engine for web pages. Look
out Google!

On this lab we give starter code that includes
working classes for MyTreeMap, MyTreeSet, and
WebPageIndex -- the three classes from Lab 6.
Even if you are completely happy with your code
for those, I encourage you to use the given classes
until you have completely debugged your work for
Lab 7 -- knowing that the trees you are working
with are correct narrows down the possibilities for
errors when you are working with the new code in
this lab.

Note that we give you just the .class files for the
Lab 6 classes; you can't modify them in any way.
They will run according to the specifications given
in Lab 6.

To use the given code you need to add the
csci151lab6 jar file to your build path, just as you
did in Lab 6, via

Project->Properties->BuildPath->Libraries->AddJARs

If you use your own classes you should add them
to the project along with the J-Soup jar file and
add that jar file to your build path.

Either way you might want to test creating a
WebPageIndex:

WebPageIndex index = new WebPageIndex("http://www.oberlin.edu");
System.out.println(index.getWordCount());

If this works you have what you need to proceed.

You start coding in Lab 7 by implementing
PriorityQueues. You can use an array or ArrayList
to hold the tree nodes, but you will be building
some rather large queues so if you use a fixed-size
array you need to add into the offer() method the
possibility of resizing the array before adding more
data into it.

The methods you need to implement for myPriorityQueue<T>
include

public T peek(): return the root of the binary heap

public boolean offer(T item): insert item into the heap and
adjust the heap structure

public void percolateDown(int hole): If the node at index
hole does not satisfy the heap property, switch its data with
that of its smaller child and repeat with the child index.

public T poll(): This removes the item at the root of the heap
and calls percolateDown to pass the resulting hole down
through the heap.

Iterator<T> iterator(): which returns an iterator over the
data in the queue. This is easy if your base type is an
ArrayList.

void setComparator(Comparator<T> cmp): This installs
a new comparator for the priority queue and re-
heapifies the queue. This is crucial for our functionality,
because every query we process will create a new
comparator. If you put the root of the heap at index 1,
so that the children of node i are at 2i and 2i+1, you can
re-heapify with the loop

for (int i = size()/2; i > 0; i--)
percolateDown(i);

When you are sure your priority queues are
working correctly, write a comparator class for
WebPageIndex objects. The provided code has
a String comparator class as an example. This is
only an illustration; you won't actually use the
String comparator. For WebPageIndex objects,
your comparator constructor will take a query
string s as an argument and use it to build a
comparator that gives smallest values to web
pages that give the best responses to the query.

The last step is to write the ProcessQuery class. This
has a main() method that opens a file from arg[0]; the
contents of this file should be a list of URLs of web
pages. The method builds a list of WebPageIndex
objects of these pages.

It then goes into a loop that reads query strings
from the console. For each query it builds a
comparator for the WebPageIndex objects and
turns the list of WebPageIndex objects into a
MyPriorityQueue<WebPageIndex>.

Finally, it goes through a loop that repeatedly polls
the priority queue (i.e, it removes the root of the
heap), and prints the URL of the page that was
removed. The queue is updates and the loop
repeats, either until the queue is empty or until
enough pages have been printed.

